Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 141, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745192

RESUMO

BACKGROUND: Neuroblastoma (NB) patients with amplified MYCN often face a grim prognosis and are resistant to existing therapies, yet MYCN protein is considered undruggable. KAP1 (also named TRIM28) plays a crucial role in multiple biological activities. This study aimed to investigate the relationship between KAP1 and MYCN in NB. METHODS: Transcriptome analyses and luciferase reporter assay identified that KAP1 was a downstream target of MYCN. The effects of KAP1 on cancer cell proliferation and colony formation were explored using the loss-of-function assays in vitro and in vivo. RNA stability detection was used to examine the influence of KAP1 on MYCN expression. The mechanisms of KAP1 to maintain MYCN mRNA stabilization were mainly investigated by mass spectrum, immunoprecipitation, RIP-qPCR, and western blotting. In addition, a xenograft mouse model was used to reveal the antitumor effect of STM2457 on NB. RESULTS: Here we identified KAP1 as a critical regulator of MYCN mRNA stability by protecting the RNA N6-methyladenosine (m6A) reader YTHDC1 protein degradation. KAP1 was highly expressed in clinical MYCN-amplified NB and was upregulated by MYCN. Reciprocally, KAP1 knockdown reduced MYCN mRNA stability and inhibited MYCN-amplified NB progression. Mechanistically, KAP1 regulated the stability of MYCN mRNA in an m6A-dependent manner. KAP1 formed a complex with YTHDC1 and RNA m6A writer METTL3 to regulate m6A-modified MYCN mRNA stability. KAP1 depletion decreased YTHDC1 protein stability and promoted MYCN mRNA degradation. Inhibiting MYCN mRNA m6A modification synergized with chemotherapy to restrain tumor progression in MYCN-amplified NB. CONCLUSIONS: Our research demonstrates that KAP1, transcriptionally activated by MYCN, forms a complex with YTHDC1 and METTL3, which in turn maintain the stabilization of MYCN mRNA in an m6A-dependent manner. Targeting m6A modification by STM2457, a small-molecule inhibitor of METTL3, could downregulate MYCN expression and attenuate tumor proliferation. This finding provides a new alternative putative therapeutic strategy for MYCN-amplified NB.


Assuntos
Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Proteína 28 com Motivo Tripartido , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Camundongos , Animais , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Linhagem Celular Tumoral , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Adenosina/análogos & derivados , Adenosina/metabolismo
2.
Artigo em Chinês | MEDLINE | ID: mdl-38677988

RESUMO

Objective: To explore the expression of KAP1 (KRAB-associated protein 1, KAP1) in Malignant pleural mesothelioma (MPM) based on the cancer genome atlas (TCGA) and clinical trials. And elucidate the correlation between the expression of KAP1 and the clinical pathological parameters of patients with MPM and its prognosis. Methods: In April 2022, Based on the second generation KAP1mRNA sequencing data and clinicopathological data of MPM patients downloaded from TCGA database, the correlation between KAP1mRNA expression and clinical parameters was analyzed, and the correlation between KAP1 protein expression and clinicopathological parameters and its prognostic value were analyzed based on Chuxiong data set cohort clinical samples. The expression of KAP1 mRNA in MPM samples and matched normal tumor adjacent tissues was detected by qRT-PCR, and the expression of KAP1 protein in MPM and normal pleural tissues was detected by immunohistochemistry and Westernblotting. To construct a Kaplan-Meier model to explore the effect of KAP1 expression on the prognosis of MPM patients, and to analyze the prognostic factors of MPM patients by Cox regression. Results: qRT-PCR and Western blotting detection showed that the expression levels of KAP1 gene in four different MPM cells (NCI-H28, NCI-H2052, NCI-H2452, and MTSO-211H) were significantly higher than those in normal pleural mesothelial cells Met-5A. qRT-PCR, Western blotting and IHC results demonstrated that the mRNA and protein expression levels of KAP1 in MPM tissues was significantly higher than that in matching normal mesothelial tissues, and the expression level of KAP1 protein was correlated with TP 53 protein expression levels and serum CEA levels (P<0.05) . The mRNA expression level was significantly correlated with the prognosis, The overall survival time of mesothelioma patients with high KAP1mRNA expression was significantly shorter (HR=3.7, Logrank P<0.001) . Tumor type, age and the mRNA expression were related to the prognosis of MPM patients (P<0.05) . Multivariate analysis showed that tumor type and KAP1 mRNA expression level were independent prognostic factors of MPM patients (P<0.05) . Conclusion: In this study, TCGA database and Chuxiong cohort experiment samples were used to collect the relevant information of KAP1 expression in malignant melanoma tissues. It was confirmed that KAP1 is highly expressed in MPM tissues. The mRNA expression level and pathological type are correlated with the prognosis of patients.


Assuntos
Mesotelioma Maligno , Neoplasias Pleurais , Proteína 28 com Motivo Tripartido , Humanos , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , Prognóstico , Mesotelioma Maligno/metabolismo , Mesotelioma Maligno/genética , Neoplasias Pleurais/genética , Neoplasias Pleurais/metabolismo , Masculino , Feminino , Linhagem Celular Tumoral , Mesotelioma/genética , Mesotelioma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pessoa de Meia-Idade , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
3.
Nat Commun ; 15(1): 1106, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321029

RESUMO

The maturation process of natural killer (NK) cells, which is regulated by multiple transcription factors, determines their functionality, but few checkpoints specifically targeting this process have been thoroughly studied. Here we show that NK-specific deficiency of glucose-regulated protein 94 (gp96) leads to decreased maturation of NK cells in mice. These gp96-deficient NK cells exhibit undermined activation, cytotoxicity and IFN-γ production upon stimulation, as well as weakened responses to IL-15 for NK cell maturation, in vitro. In vivo, NK-specific gp96-deficient mice show increased tumor growth. Mechanistically, we identify Eomes as the downstream transcription factor, with gp96 binding to Trim28 to prevent Trim28-mediated ubiquitination and degradation of Eomes. Our study thus suggests the gp96-Trim28-Eomes axis to be an important regulator for NK cell maturation and cancer surveillance in mice.


Assuntos
Antígenos de Neoplasias , Proteínas de Choque Térmico , Animais , Camundongos , Proteínas de Choque Térmico/metabolismo , Células Matadoras Naturais , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo
4.
Exp Biol Med (Maywood) ; 248(23): 2210-2218, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058023

RESUMO

The influences of TRIM28 on the gastric tumorigenesis together with potential molecular mechanisms remain to be studied. We aimed at exploring the important effects of TRIM28 on gastric cancer (GC) and uncovering underling molecular mechanisms. Through immunohistochemistry analysis of 20 pairs of GC and the peritumoral tissues, the expression level of TRIM28 was determined. A variety of assays were applied to explore the important roles of TRIM28 in GC. Western blotting and qRT-PCR analyses were used to analyze the association between TRIM28 and the Wnt/ß-catenin signaling pathway. TRIM28 was highly expressed in GC tissues than peritumoral tissues. And high expression level of TRIM28 in GC was associated with good prognostic effects. In vitro functional assays suggested TRIM28 knockdown enhanced the proliferation and clone formation of GC cell. Moreover, TRIM28 knockdown enhanced the expression level of stemness markers, strengthened sphere-forming and drug-resistance properties of GC cells, suggesting important effect on GC cell stemness. Besides, our analysis showed that the Wnt/ß-catenin signaling was involved in the effect of TRIM28 on GC cell stemness property, and blocking Wnt/ß-catenin signaling pathway obviously rescued the promotion influence of TRIM28 knockdown. Overall, TRIM28 has an important influence on regulating the stem-like property of GC cell via Wnt/ß-catenin signaling, suggesting TRIM28 a promising drug target and a potential predictor of prognosis.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteína 28 com Motivo Tripartido/metabolismo
5.
J Exp Clin Cancer Res ; 42(1): 275, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865804

RESUMO

BACKGROUND: Alterations in several tripartite motif-containing (TRIM) family proteins have been implicated in the pathogenesis of lung cancer. TRIM28, a member of the TRIM E3 ligase family, has been associated with tumorigenesis, cell proliferation, and inflammation. However, little is known about TRIM28 expression and its role in the immune microenvironment of non-small cell lung cancer (NSCLC). METHODS: We assessed the clinical significance of TRIM28 in tissue microarrays and TCGA cohorts. We investigated the function of TRIM28 in syngeneic mouse tumor models, the KrasLSL-G12D/+; Tp53fl/fl (KP) mouse model, and humanized mice. Immune cell composition was analyzed using flow cytometry and immunohistochemistry. RESULTS: Our findings revealed a positive correlation between TRIM28 expression and the infiltration of suppressive myeloid-derived suppressor cells (MDSCs) in NSCLC. Moreover, silencing TRIM28 enhanced the efficacy of anti-PD-1 immunotherapy by reshaping the inflamed tumor microenvironment. Mechanistically, we demonstrated that TRIM28 could physically interact with receptor-interacting protein kinase 1 (RIPK1) and promote K63-linked ubiquitination of RIPK1, which is crucial for sustaining activation of the NF-κB pathway. Mutagenesis of the E3 ligase domain corroborated the essential role of E3 ligase activity in TRIM28-mediated NF-κB activation. Further experiments revealed that TRIM28 could upregulate the expression of CXCL1 by activating NF-κB signaling. CXCL1 could bind to CXCR2 on MDSCs and promote their migration to the tumor microenvironment. TRIM28 knockdown increased responsiveness to anti-PD-1 therapy in immunocompetent mice, characterized by increased CD8+T tumor-infiltrating lymphocytes and decreased MDSCs. CONCLUSION: The present study identified TRIM28 as a promoter of chemokine-driven recruitment of MDSCs through RIPK1-mediated NF-κB activation, leading to the suppression of infiltrating activated CD8+T cells and the development of anti-PD-1 resistance. Understanding the regulation of MDSC recruitment and function by TRIM28 provides crucial insights into the association between TRIM28 signaling and the development of an immunosuppressive tumor microenvironment. These insights may inform the development of combination therapies to enhance the effectiveness of immune checkpoint blockade therapy in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Supressoras Mieloides , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , NF-kappa B/metabolismo , Modelos Animais de Doenças , Microambiente Tumoral , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
6.
J Endocrinol ; 259(2)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725394

RESUMO

Type 2 diabetes mellitus (T2DM), a condition characterised by insulin resistance (IR) and skeletal muscle mitochondrial abnormalities, is a leading cause of death in developed societies. Much work has postulated that improving pathways linked to mitochondrial health, including autophagy, may be a potential avenue to prevent or treat T2DM. Given the recent data indicating a role for tripartite motif-containing 28 (TRIM28) in autophagy and mitochondrial pathways, we investigated whether muscle-specific deletion of TRIM28 might impact on obesity, glucose tolerance, and IR in mice. We studied two different muscle-specific (MCK-cre and ACTA1-cre-ERT2) TRIM28 knockout models, which were phenotyped during and after being fed a chow or high-fat diet (HFD). Whilst muscle-specific deletion of TRIM28 in both models demonstrated alterations in markers of mitochondrial activity and autophagy in skeletal muscle, we did not observe major impacts on the majority of metabolic measures in these mice. Specifically, we demonstrate that deletion of TRIM28 in skeletal muscle of mice during (MCK-cre) or post-development (ACTA1-cre-ERT2) does not prevent HFD-induced obesity or glucose intolerance. These findings are consistent with those reported previously in relation to autophagy and mitochondria in other cell types, and thus warrant further study into the biological role TRIM28 has in relation to mitochondrial function.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo
7.
Nat Commun ; 14(1): 4605, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528140

RESUMO

Estrogen and progesterone, acting through their cognate receptors the estrogen receptor α (ERα) and the progesterone receptor (PR) respectively, regulate uterine biology. Using rapid immunoprecipitation and mass spectrometry (RIME) and co-immunoprecipitation, we identified TRIM28 (Tripartite motif containing 28) as a protein which complexes with ERα and PR in the regulation of uterine function. Impairment of TRIM28 expression results in the inability of the uterus to support early pregnancy through altered PR and ERα action in the uterine epithelium and stroma by suppressing PR and ERα chromatin binding. Furthermore, TRIM28 ablation in PR-expressing uterine cells results in the enrichment of a subset of TRIM28 positive and PR negative pericytes and epithelial cells with progenitor potential. In summary, our study reveals the important roles of TRIM28 in regulating endometrial cell composition and function in women, and also implies its critical functions in other hormone regulated systems.


Assuntos
Estradiol , Receptor alfa de Estrogênio , Gravidez , Feminino , Humanos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estradiol/metabolismo , Útero/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Epitélio/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
8.
Cell Death Differ ; 30(8): 1957-1972, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37438603

RESUMO

Circular RNAs (circRNAs) are a class of noncoding RNAs that have been found to be involved in intervertebral disc degeneration (IVDD) progression, and N6-methyladenosine (m6A) broadly exists in circRNAs. Here, we identified circGPATCH2L with a low m6A methylation level to be upregulated in degenerative nucleus pulposus tissues. Mechanistically, as a protein decoy for tripartite motif containing 28 (TRIM28) within aa 402-452 region, circGPATCH2L abrogates the phosphorylation of TRIM28 and inhibits P53 degradation, which contributes to DNA damage accumulation and cellular apoptosis and leads to IVDD progression. Moreover, m6A-methylated circGPATCH2L is recognised and endoribonucleolytically cleaved by a YTHDF2-RPL10-RNase P/MRP complex to maintain the physiological state of nucleus pulposus cells. Thus, our data show the physiological significance of m6A modification in regulating circRNA abundance and provide a potentially effective therapeutic target for the treatment of IVDD.


Assuntos
Degeneração do Disco Intervertebral , RNA Circular , Proteína 28 com Motivo Tripartido , Humanos , Apoptose , Metilação de DNA , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo
9.
Cell Rep ; 42(6): 112625, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294634

RESUMO

Endogenous retroviruses (ERVs) have rewired host gene networks. To explore the origins of co-option, we employed an active murine ERV, IAPEz, and an embryonic stem cell (ESC) to neural progenitor cell (NPC) differentiation model. Transcriptional silencing via TRIM28 maps to a 190 bp sequence encoding the intracisternal A-type particle (IAP) signal peptide, which confers retrotransposition activity. A subset of "escapee" IAPs (∼15%) exhibits significant genetic divergence from this sequence. Canonical repressed IAPs succumb to a previously undocumented demarcation by H3K9me3 and H3K27me3 in NPCs. Escapee IAPs, in contrast, evade repression in both cell types, resulting in their transcriptional derepression, particularly in NPCs. We validate the enhancer function of a 47 bp sequence within the U3 region of the long terminal repeat (LTR) and show that escapee IAPs convey an activating effect on nearby neural genes. In sum, co-opted ERVs stem from genetic escapees that have lost vital sequences required for both TRIM28 restriction and autonomous retrotransposition.


Assuntos
Retrovirus Endógenos , Proteína 28 com Motivo Tripartido , Animais , Camundongos , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Histonas/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Sequências Repetidas Terminais/genética
10.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372979

RESUMO

TRIM28/KAP1/TIF1ß is a crucial epigenetic modifier. Genetic ablation of trim28 is embryonic lethal, although RNAi-mediated knockdown in somatic cells yields viable cells. Reduction in TRIM28 abundance at the cellular or organismal level results in polyphenism. Posttranslational modifications such as phosphorylation and sumoylation have been shown to regulate TRIM28 activity. Moreover, several lysine residues of TRIM28 are subject to acetylation, but how acetylation of TRIM28 affects its functions remains poorly understood. Here, we report that, compared with wild-type TRIM28, the acetylation-mimic mutant TRIM28-K304Q has an altered interaction with Krüppel-associated box zinc-finger proteins (KRAB-ZNFs). The TRIM28-K304Q knock-in cells were created in K562 erythroleukemia cells by CRISPR-Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein nuclease 9) gene editing method. Transcriptome analysis revealed that TRIM28-K304Q and TRIM28 knockout K562 cells had similar global gene expression profiles, yet the profiles differed considerably from wild-type K562 cells. The expression levels of embryonic-related globin gene and a platelet cell marker integrin-beta 3 were increased in TRIM28-K304Q mutant cells, indicating the induction of differentiation. In addition to the differentiation-related genes, many zinc-finger-proteins genes and imprinting genes were activated in TRIM28-K304Q cells; they were inhibited by wild-type TRIM28 via binding with KRAB-ZNFs. These results suggest that acetylation/deacetylation of K304 in TRIM28 constitutes a switch for regulating its interaction with KRAB-ZNFs and alters the gene regulation as demonstrated by the acetylation mimic TRIM28-K304Q.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas Repressoras , Humanos , Proteínas Repressoras/genética , Células K562 , Acetilação , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , Mutação , Expressão Gênica , Zinco/metabolismo
11.
J Virol ; 97(5): e0058023, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166302

RESUMO

Hepatitis B virus (HBV) infection affects hepatic metabolism. Serum metabolomics studies have suggested that HBV possibly hijacks the glycerol-3-phosphate (G3P) shuttle. In this study, the two glycerol-3-phosphate dehydrogenases (GPD1 and GPD2) in the G3P shuttle were analyzed for determining their role in HBV replication and the findings revealed that GPD2 and not GPD1 inhibited HBV replication. The knockdown of GPD2 expression upregulated HBV replication, while GPD2 overexpression reduced HBV replication. Moreover, the overexpression of GPD2 significantly reduced HBV replication in hydrodynamic injection-based mouse models. Mechanistically, this inhibitory effect is related to the GPD2-mediated degradation of HBx protein by recruiting the E3 ubiquitin ligase TRIM28 and not to the alterations in G3P metabolism. In conclusion, this study revealed GPD2, a key enzyme in the G3P shuttle, as a host restriction factor in HBV replication. IMPORTANCE The glycerol-3-phosphate (G3P) shuttle is important for the delivery of cytosolic reducing equivalents into mitochondria for oxidative phosphorylation. The study analyzed two key components of the G3P shuttle and identified GPD2 as a restriction factor in HBV replication. The findings revealed a novel mechanism of GPD2-mediated inhibition of HBV replication via the recruitment of TRIM28 for degrading HBx, and the HBx-GPD2 interaction could be another potential therapeutic target for anti-HBV drug development.


Assuntos
Glicerolfosfato Desidrogenase , Hepatite B , Proteína 28 com Motivo Tripartido , Proteínas Virais Reguladoras e Acessórias , Animais , Camundongos , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Mitocôndrias/enzimologia , Fosfatos/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral
12.
Oncogene ; 42(17): 1347-1359, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36882525

RESUMO

The Tripartite motif-containing 28 (TRIM28) transcriptional cofactor is significantly upregulated in high-grade and metastatic prostate cancers. To study the role of TRIM28 in prostate cancer progression in vivo, we generated a genetically-engineered mouse model, combining prostate-specific inactivation of Trp53, Pten and Trim28. Trim28 inactivated NPp53T mice developed an inflammatory response and necrosis in prostate lumens. By conducting single-cell RNA sequencing, we found that NPp53T prostates had fewer luminal cells resembling proximal luminal lineage cells, which are cells with progenitor activity enriched in proximal prostates and prostate invagination tips in wild-type mice with analogous populations in human prostates. However, despite increased apoptosis and reduction of cells expressing proximal luminal cell markers, we found that NPp53T mouse prostates evolved and progressed to invasive prostate carcinoma with a shortened overall survival. Altogether, our findings suggest that TRIM28 promotes expression of proximal luminal cell markers in prostate tumor cells and provides insights into TRIM28 function in prostate tumor plasticity.


Assuntos
Plasticidade Celular , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Neoplasias da Próstata/patologia , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , Próstata/patologia , Modelos Animais de Doenças , Células-Tronco Neoplásicas/patologia
13.
J Biol Chem ; 299(5): 104621, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36935008

RESUMO

Autophagy plays a pivotal role in physiology and pathophysiology, including cancer. Mechanisms of autophagy dysregulation in cancer remain elusive. Loss of function of TRIM28, a multifunction protein, is seen in familial kidney malignancy, but the mechanism by which TRIM28 contributes to the etiology of kidney malignancy is unclear. In this study, we show TRIM28 retards kidney cancer cell proliferation through inhibiting autophagy. Mechanistically, we find TRIM28 promotes ubiquitination and proteasome-mediated degradation of transcription factor TFE3, which is critical for autophagic gene expression. Genetic activation of TFE3 due to gene fusion is known to cause human kidney malignancy, but whether and how transcription activation by TFE3 involves chromatin changes is unclear. Here, we find another mode of TFE3 activation in human renal carcinoma. We find that TFE3 is constitutively localized to the cell nucleus in human and mouse kidney cancer, where it increases autophagic gene expression and promotes cell autophagy as well as proliferation. We further uncover that TFE3 interacts with and recruits histone H3K27 demethylase KDM6A for autophagic gene upregulation. We reveal that KDM6A contributes to expression of TFE3 target genes through increasing H3K4me3 rather than demethylating H3K27. Collectively, in this study, we identify a functional TRIM28-TFE3-KDM6A signal axis, which plays a critical role in kidney cancer cell autophagy and proliferation.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteína 28 com Motivo Tripartido , Animais , Humanos , Camundongos , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carcinoma de Células Renais/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
14.
Viruses ; 15(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36992419

RESUMO

Accumulating evidence highlights the pathogenetic role of human endogenous retroviruses (HERVs) in eliciting and maintaining multiple sclerosis (MS). Epigenetic mechanisms, such as those regulated by TRIM 28 and SETDB1, are implicated in HERV activation and in neuroinflammatory disorders, including MS. Pregnancy markedly improves the course of MS, but no study explored the expressions of HERVs and of TRIM28 and SETDB1 during gestation. Using a polymerase chain reaction real-time Taqman amplification assay, we assessed and compared the transcriptional levels of pol genes of HERV-H, HERV-K, HERV-W; of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis associated retrovirus (MSRV); and of TRIM28 and SETDB1 in peripheral blood and placenta from 20 mothers affected by MS; from 27 healthy mothers, in cord blood from their neonates; and in blood from healthy women of child-bearing age. The HERV mRNA levels were significantly lower in pregnant than in nonpregnant women. Expressions of all HERVs were downregulated in the chorion and in the decidua basalis of MS mothers compared to healthy mothers. The former also showed lower mRNA levels of HERV-K-pol and of SYN1, SYN2, and MSRV in peripheral blood. Significantly lower expressions of TRIM28 and SETDB1 also emerged in pregnant vs. nonpregnant women and in blood, chorion, and decidua of mothers with MS vs. healthy mothers. In contrast, HERV and TRIM28/SETDB1 expressions were comparable between their neonates. These results show that gestation is characterized by impaired expressions of HERVs and TRIM28/SETDB1, particularly in mothers with MS. Given the beneficial effects of pregnancy on MS and the wealth of data suggesting the putative contribution of HERVs and epigenetic processes in the pathogenesis of the disease, our findings may further support innovative therapeutic interventions to block HERV activation and to control aberrant epigenetic pathways in MS-affected patients.


Assuntos
Retrovirus Endógenos , Histona-Lisina N-Metiltransferase , Esclerose Múltipla , Complicações na Gravidez , Proteína 28 com Motivo Tripartido , Feminino , Humanos , Recém-Nascido , Gravidez , Retrovirus Endógenos/genética , Genes env , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Mães , RNA Mensageiro , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , Epigênese Genética
15.
Cell Rep ; 42(1): 112012, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36680774

RESUMO

Long bones are generated by mesoderm-derived skeletal progenitor/stem cells (SSCs) through endochondral ossification, a process of sequential chondrogenic and osteogenic differentiation tightly controlled by the synergy between intrinsic and microenvironment cues. Here, we report that loss of TRIM28, a transcriptional corepressor, in mesoderm-derived cells expands the SSC pool, weakens SSC osteochondrogenic potential, and endows SSCs with properties of ectoderm-derived neural crest cells (NCCs), leading to severe defects of skeletogenesis. TRIM28 preferentially enhances H3K9 trimethylation and DNA methylation on chromatin regions more accessible in NCCs; loss of this silencing upregulates neural gene expression and enhances neurogenic potential. Moreover, TRIM28 loss causes hyperexpression of GREM1, which is an extracellular signaling factor promoting SSC self-renewal and SSC neurogenic potential by activating AKT/mTORC1 signaling. Our results suggest that TRIM28-mediated chromatin silencing establishes a barrier for maintaining the SSC lineage trajectory and preventing a transition to ectodermal fate by regulating both intrinsic and microenvironment cues.


Assuntos
Osteogênese , Proteína 28 com Motivo Tripartido , Diferenciação Celular/genética , Cromatina , Expressão Gênica , Proteínas Proto-Oncogênicas c-akt/genética , Células-Tronco , Serina-Treonina Quinases TOR/genética , Animais , Camundongos , Proteína 28 com Motivo Tripartido/metabolismo , Transdução de Sinais
16.
Sci Adv ; 9(4): eadf6277, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706191

RESUMO

Replication stress is a major source of endogenous DNA damage. Despite the identification of numerous proteins on replication forks to modulate fork or replication machinery activities, it remains unexplored whether noncoding RNAs can localize on stalled forks and play critical regulatory roles. Here, we identify an uncharacterized long noncoding RNA NONMMUT028956 (Lnc956 for short) predominantly expressed in mouse embryonic stem cells. Lnc956 is accumulated on replication forks to prevent fork collapse and preserve genomic stability and is essential for mouse embryogenesis. Mechanistically, it drives assembly of the Lnc956-TRIM28-HSP90B1 complex on stalled forks in an interdependent manner downstream of ataxia telangiectasia and Rad3-related (ATR) signaling. Lnc956-TRIM28-HSP90B1 complex physically associates with minichromosome maintenance proteins 2 (MCM2) to minichromosome maintenance proteins 7 (MCM7) hexamer via TRIM28 and directly regulates the CDC45-MCM-GINS (CMG) helicase retention on chromatin. The regulation of Lnc956-TRIM28-HSP90B1 on CMG retention is mediated by HSP90B1's chaperoning function. These findings reveal a player that actively regulates replisome retention to prevent fork collapse.


Assuntos
DNA Helicases , Replicação do DNA , Animais , Camundongos , Cromatina , DNA Helicases/genética , DNA Helicases/metabolismo , Instabilidade Genômica , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , RNA não Traduzido/genética
17.
Sci China Life Sci ; 66(3): 545-562, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36100837

RESUMO

Protein citrullination, including histone H1 and H3 citrullination, is important for transcriptional regulation, DNA damage response, and pluripotency of embryonic stem cells (ESCs). Tripartite motif containing 28 (Trim28), an embryonic development regulator involved in ESC self-renewal, has recently been identified as a novel substrate for citrullination by Padi4. However, the physiological functions of Trim28 citrullination and its role in regulating the chromatin structure and gene transcription of ESCs remain unknown. In this paper, we show that Trim28 is specifically citrullinated in mouse ESCs (mESCs), and that the loss of Trim28 citrullination induces loss of pluripotency. Mechanistically, Trim28 citrullination enhances the interaction of Trim28 with Smarcad1 and prevents chromatin condensation. Additionally, Trim28 citrullination regulates mESC pluripotency by promoting transcription of Nanog and Klf4 which it does by increasing the enrichment of H3K27ac and H3K4me3 and decreasing the enrichment of H3K9me3 in the transcriptional regulatory region. Thus, our findings suggest that Trim28 citrullination is the key for the epigenetic activation of pluripotency genes and pluripotency maintenance of ESCs. Together, these results uncover a role Trim28 citrullination plays in pluripotency regulation and provide novel insight into how citrullination of proteins other than histones regulates chromatin compaction.


Assuntos
Citrulinação , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Regulação da Expressão Gênica , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias , Diferenciação Celular , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , DNA Helicases
18.
BMC Pulm Med ; 22(1): 469, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476351

RESUMO

OBJECTIVE: miR-125b-5p plays an important role in the development of cancer and drug resistance. However, in cisplatin resistance of non-small cell lung cancer (NSCLC), the function and potential mechanism of miR-125b-5p is still unclear. The aim of this study was to investigate the role and molecular mechanism of miR-125b-5p in cisplatin resistance of NSCLC. METHODS: A GEO dataset (GSE168707) was analyzed to find high miR-125b-5p levels were associated with DDP resistance. miR-125b-5p expression levels were detected in A549 and A549/DDP cells via real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays, western blots and mouse model xenografted were performed to identify CREB1 as a direct target gene of miR-125b-5p. Cell proliferation and apoptosis were also performed to identify whether miR-125b-5p upregulation by TRIM28 induces DDP resistance in NSCLC through CREB1 inhibition. RESULTS: In A549/DDP cells, miR-125b-5p expression was upregulated compared to A549 cells. Then miR-125b-5p was found to increase DDP resistance in NSCLC in vivo and in vitro by increasing cell proliferation and suppressing cell apoptosis. Bioinformatic analyses were used to search for gene which miR-125b-5p can target. We identified miR-125b-5p can regulate CREB1 via luciferase reporter assays, qRT-PCR and western blots. Cell proliferation and apoptosis were also performed to confirm miR-125b-5p could impact on CREB1 and induce the DDP resistance in NSCLC. Additionally, we used bioinformatic analyses to find tripartite motif-containing 28 (TRIM28) as a transcriptional enhance factor of miR-125b-5p. The expression of TRIM28 was upregulated in A549/DDP cells compared with that in A549 cells by qRT-PCR. Finally, we found TRIM28 could mediate DDP resistance through miR-125b-5p/CREB1 axis via cell proliferation, western blot and apoptosis assay. CONCLUSIONS: Overall, our findings demonstrated novel functions and mechanisms underlying DDP resistance in NSCLC through the TRIM28/miR-125b-5p/CREB1 axis. These may serve as novel therapeutic targets to improve the treatment efficacy using DDP for NSCLC in the future.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , MicroRNAs , Proteína 28 com Motivo Tripartido , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Biologia Computacional , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Conjuntos de Dados como Assunto , Humanos , Células A549 , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
19.
EMBO J ; 41(24): e111179, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36341546

RESUMO

Transposable elements are a genetic reservoir from which new genes and regulatory elements can emerge. However, expression of transposable elements can be pathogenic and is therefore tightly controlled. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) recruit the co-repressor KRAB-associated protein 1 (KAP1/TRIM28) to regulate many transposable elements, but how KRAB-ZFPs and KAP1 interact remains unclear. Here, we report the crystal structure of the KAP1 tripartite motif (TRIM) in complex with the KRAB domain from a human KRAB-ZFP, ZNF93. Structure-guided mutations in the KAP1-KRAB binding interface abolished repressive activity in an epigenetic transcriptional silencing assay. Deposition of H3K9me3 over thousands of loci is lost genome-wide in cells expressing a KAP1 variant with mutations that abolish KRAB binding. Our work identifies and functionally validates the KRAB-KAP1 molecular interface, which is critical for a central transcriptional control axis in vertebrates. In addition, the structure-based prediction of KAP1 recruitment efficiency will enable optimization of KRABs used in CRISPRi.


Assuntos
Elementos de DNA Transponíveis , Proteínas Repressoras , Animais , Humanos , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , Dedos de Zinco/genética , Regulação da Expressão Gênica , Epigênese Genética
20.
Comput Math Methods Med ; 2022: 6267851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238495

RESUMO

Background: Since the 1970s, liver hepatocellular carcinoma (LIHC) has experienced a constant rise in incidence and mortality rates, making the identification of LIHC biomarkers very important. Tripartite Motif-Containing 28 (TRIM28) is a protein-coding gene which encodes the tripartite motif-containing proteins (TRIMs) family and is associated with specific chromatin regions. TRIM28 expression and its prognostic value and impact on the immune system in LIHC patients are being investigated for the first time. Methods: The TRIM28 expression data from TCGA database was used to analyze TRIM28 expression, clinicopathological information, gene enrichment, and immune infiltration and conduct additional bioinformatics analysis. R language was used for statistical analysis. TIMER, CIBERSORT, and ssGSEA were used to assess immune responses of TRIM28 in LIHC. Next, the results were validated using GEPIA, ROC analysis, and immunohistochemical staining pictures from the THPA. GSE14520, GSE63898, and GSE87630 datasets were analyzed using ROC analysis to further evaluate TRIM28's diagnostic value. To ultimately determine TRIM28 expression, we performed qRT-PCR (quantitative real-time polymerase chain reaction). Results: High TRIM28 expression level was associated with T classification, pathologic stage, histologic grade, and serum AFP levels. In patients with LIHC, TRIM28 was an independent risk factor for a poor prognosis. The pathways ligand-receptor interaction, which is critical in LIHC patients, were closely associated with TRIM28 expression, and the function of DC could be suppressed by overexpression of TRIM28. As a final step, our results were validated by GEO data and qRT-PCR. Conclusions: TRIM28 will shed new light on LIHC mechanisms. As an effective diagnostic and intervention tool, this gene will be able to diagnose and treat LIHC at an early stage.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Cromatina , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Prognóstico , Fatores de Transcrição/genética , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA